Neural Networks for Technical Analysis: a Study on Klci
نویسنده
چکیده
This paper presents a study of artificial neural nets for use in stock index forecasting. The data from a major emerging market, Kuala Lumpur Stock Exchange, are applied as a case study. Based on the rescaled range analysis, a backpropagation neural network is used to capture the relationship between the technical indicators and the levels of the index in the market under study over time. Using different trading strategies, a significant paper profit can be achieved by purchasing the indexed stocks in the respective proportions. The results show that the neural network model can get better returns compared with conventional ARIMA models. The experiment also shows that useful predictions can be made without the use of extensive market data or knowledge. The paper, however, also discusses the problems associated with technical forecasting using neural networks, such as the choice of “time frames” and the “recency” problems.
منابع مشابه
On the use of back propagation and radial basis function neural networks in surface roughness prediction
Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...
متن کاملColor Matching of Blends Prepared From Black and White Fibers by Neural Networks (TECHNICAL NOTE)
The color of the blends of pre-colored fibers depends on the ratio of each fiber in the blends. Some theories have been introduced for color matching of blends of pre-colored fibers. Most however, are restricted in scope and accuracy. Kubelka and Munk presented the most applicable theory, which is still used in industry. In this work, the classical Kubelka-Munk method for color prediction of a ...
متن کاملDetermining water quality along the river with using evolutionary artificial neural networks (Case Study, Karoon River , Shahid Abbaspur-Arab Asad reach)
Rivers are important as the main source of supply for drinking, agriculture and industry.However, drinking water quality in terms of qualitative parameters, is the most important variable. Studias and predicting changes in quality parameters along a river, are one of the goals of water resources planners and managers. In this regard, many water quality models in order to maintain better water ...
متن کاملApplication of Artificial Neural Networks for Analysis of Flexible Pavements under Static Loading of Standard Axle
In this study, an artificial neural network was developed in order to analyze flexible pavement structure and determine its critical responses under the influence of standard axle loading. In doing so, more than 10000 four-layered flexible pavement sections composed of asphalt concrete layer, base layer, subbase layer, and subgrade soil were analyzed under the impact of standard axle loading. P...
متن کاملNumerical treatment for nonlinear steady flow of a third grade fluid in a porous half space by neural networks optimized
In this paper, steady flow of a third-grade fluid in a porous half space has been considered. This problem is a nonlinear two-point boundary value problem (BVP) on semi-infinite interval. The solution for this problem is given by a numerical method based on the feed-forward artificial neural network model using radial basis activation functions trained with an interior point method. ...
متن کامل